新闻  |   论坛  |   博客  |   在线研讨会
c8051f020 I/O配置小结
sdjntl | 2009-07-13 16:00:39    阅读:2415   发布文章

c8051f020 I/O配置小结
     020的每个I/O口引脚都可以被配置为推挽或漏极开路输出。同时引入了数字交叉开关,允许将内部数字系统资源映射到P0、P1、P2和P3的端口引脚。通过设置交叉开关寄存器可将片内的计数器/定时器、串行总线、硬件中断、ADC转换启动输入、比较器输出以及微控制器内部的其他数字信号配置为出现在端口I/O引脚。必须在访问这些外设的I/O之前配置和允许交叉开关。

注意的问题:

1.低端口既能按位寻址,也可以按字节寻址;高端口只能按字节寻址。

2.没有被分配到的引脚作为一般的数字通用I/O口。

3.P1口还可以用作ADC1的模拟输入。

4.P0MDOUT~P3MDOUT用于控制I/O端口每一位的输出状态。

5.EMIF(外部存储器接口)是用于CPU与片外XRAM之间的数据传输通道,通过寄存器EMI0CF和EMI0CN选择和管理端口实现数据的传输。

6.为了能访问片外存储器空间,必须设置EMI0CN寄存器的内容为片外存储器的空间页地址。

7.如果把外部存储器接口(EMIF)设置在高端口则首先要把EMI0CF的PRTSEL位设置为1,选择高端口,同时选择地址的复用或非复用方式,在把XBR的外部寄存器的EMIFLE位设置为0。

8.复用方式配置:在复用方式下,数据总线和地址总线的第8位共用相同的引脚(AD0~AD7)。在该方式下,要用一个外部锁存器(如74HC373或相同功能的锁存器)保持RAM地址的低8位。外部锁存器由ALE(地址锁存使能)信号控制,ALE信号由外部存储器接口逻辑驱动。

9.在总线复用时,需要把地址数据复用端口配置为漏极开路。

10.ALE高/低脉宽占1个SYSCLK周期,地址建立/保持时间占0个SYSCLK周期,/WR和/RD占12个SYSCLK周期,EMIF工作在地址/数据复用方式,即:EMI0CF |= 0x2c;EMI0TC |= 0x2c;配置EMIF的步骤是:先将EMIF选到低端口或高端口;然后选择复用方式或非复用方式;再选择存储器的模式(只用片内存储器、不带块选择的分片方式、带块选择的分片方式或只用片外存储器);然后设置EMI0TC;最后通过寄存器PnMDOUT和P74OUT选择所期望的相关端口的输出方式。如:

void PORT_Init (void)
{
    XBR2     = 0x40;       /*使能交叉开关和弱上拉*/
    P74OUT |= 0xff;       /*使能P4~P7推挽输出*/
    EMI0CF |= 0x2c;   /*EMIF工作在地址/数据复用方式,只用外部存储器,ALE高/低脉宽占1个SYSCLK周期*/
    EMI0TC |= 0x6c;   /*地址建立/保持时间占0个SYSCLK周期,/WR和/RD占12个SYSCLK周期*/
    P3MDOUT |= 0xdf;      /*使能P3.5推挽输出*/

}

11.避免高端口处于“浮空”状态,以避免因输入浮空为无效逻辑电平而导致不必要的功率消耗,为此应采取如下措施的任何一种:a.将XBR2.7位设置为逻辑0选择弱上拉状态

R/W              R/W    R/W    R/W        R/W      R/W            R/W           R/W       复位值
WEAKPUD   XBARE   -     T4EXE    T4E     UART1E     EMIFLE     CNVSTE   00000000
位7                位6      位5     位4        位3         位2            位1             位0         SFR地址


位7 WEAKPUD 弱上拉禁止位
0 弱上拉全局允许
1 弱上拉全局禁止
位6 XBARE 交叉开关允许位
0 交叉开关禁止端口0 1 2 和3 的所有引脚被强制为输入方式
1 交叉开关允许
位5 未用读0 写=忽略
位4 T4EXE T4EX 输入允许位
0 T4EX 不连到端口引脚
1 T4EX 连到端口引脚
位3 T4E T4 输入允许位
0 T4 不连到端口引脚
1 T4 连到端口引脚
位2 UART1E UART1 I/O 允许位
0 UART1 I/O 不连到端口引脚
1 UART1 TX 和RX 连到两个端口引脚
位1 EMIFLE 外部存储器接口低端口允许位
0 P0.7 P0.6 和P0.5 的功能由交叉开关或端口锁存器决定
1 如果EMI0CF.4 = 0 外部存储器接口为复用方式
则P0.7 (/WR) P0.6 (/RD)和P0.5 (/ALE)被交叉开关跳过它们的输出
状态由端口锁存器和外部存储器接口决定
1 如果EMI0CF.4 = 1 外部存储器接口为非复用方式
则P0.7 (/WR)和P0.6 (/RD)被交叉开关跳过它们的输出状态由端口锁
存器和外部存储器接口决定
位0 CNVSTE 外部转换启动输入允许位
0 CNVSTR 不连到端口引脚
1 CNVSTR 连到端口引脚;

b.令P74OUT=0xFF,将高端口输出方式配置为推拉方式(P74OUT为高端口输出方式寄存器);

c.向高端口数据寄存器P4、P5、P6和P7写0。

12.配置端口引脚的输出方式
每个端口引脚的输出方式都可被配置为漏极开路或推挽方式。在推挽方式下向端口数据
寄存器中的相应位写逻辑0 将使端口引脚被驱动到GND 写逻辑1 将使端口引脚被驱动到VDD ,在漏极开路方式下向端口数据寄存器中的相应位写逻辑0 将使端口引脚被驱动
到GND 写逻辑1 将使端口引脚处于高阻状态,当系统中不同器件的端口引脚有共享连接
即多个输出连接到同一个物理线时(例如SMBus 连接中的SDA 信号),使用漏极开路方式可
以防止不同器件之间的冲突。(推挽方式在有些书中称为推拉方式)


转载-关于开漏、推挽方式2008-01-27 17:53漏级开路即高阻状态,适用于输入/输出,其可独立输入/输出低电平和高阻状态,若需要产生高电平,则需使用外部上拉电阻或使用如LCX245等电平转换芯片。有些朋友,尤其是未学过此方面知识的朋友,在实际工作中将I/O口设置为漏开,并想输出高电平,但向口线上写1后对方并未认出高电平,但用万用表测量引脚确有电压,这种认为是不对的,对于高阻状态来说,测量电压是无意义的,正确的方法应是外加上拉电阻,上拉电阻的阻值=上拉电压/芯片引脚最大灌(拉)电流。
推挽方式可完全独立产生高低电平,推挽方式为低阻,这样,才能保证口线上不分走电压或分走极小的电压(可忽略),保证输出与电源相同的高电平,推挽适用于输出而不适用于输入,因为若对推挽(低阻)加高电平后,I=U/R,I会很大,将造成口的烧毁。

对与C8051F的很多型号片子,将I/O口设置为推挽方式的做法为:PnMDOUT=0xff,Pn=0x00,这样设置I/O口为推挽,并输出低电平(可降低功耗) 将I/O口设置为漏开方式的做法为:PnMDOUT=0x00,Pn=0x11,这样设置I/O口为漏开。

如果学过三极管放大电路一定知道,前置单管放大器和功放末级放大电路的区别。单片机内部的逻辑经过内部的逻辑运算后需要输出到外面,外面的器件可能需要较大的电流才能推动,因此在单片机的输出端口必须有一个驱动电路。

    这种驱动电路有两种形式:

    其中的一种是采用一只N型三极管(npn或n沟道),以npn三极管为例,就是e接地,b接内部的逻辑运算,c引出,b受内部驱动可以控制三极管是否导通但如果三极管的c极一直悬空,尽管b极上发生高低变化,c极上也不会有高低变化,因此在这种条件下必须在外部提供一个电阻,电阻的一端接c(引出脚)另一端接电源,这样当三极管的b有高电压是三极管导通,c电压为低,当b为低电压时三极管不通,c极在电阻的拉动下为高电压,这种驱动电路有个特点:低电压是三极管驱动的,高电压是电阻驱动的(上下不对称),三极管导通时的ec内阻很小,因此可以提供很大的电流,可以直接驱动led甚至继电器,但电阻的驱动是有限的,最大高电平输出电流=(vcc-Vh)/r;

    另一种是互补推挽输出,采用2只晶体管,一只在上一只在下,上面的一只是n型,下面为p型(以三极管为例),两只管子的连接为:npn(上)的c连vcc,pnp(下)的c接地,两只管子的ee,bb相连,其中ee作为输出(引出脚),bb接内部逻辑,这个电路通常用于功率放大点路的末级(音响),当bb接高电压时npn管导通输出高电压,由于三极管的ec电阻很小,因此输出的高电压有很强的驱动能力,当bb接低电压时npn截至,pnp导通,由于三极管的ec电阻很小因此输出的低电压有很强的驱动能力,简单的例子,9013导通时ec电阻不到10欧,以Vh=2.5v,vcc=5v计算,高电平输出电流最大=250MA,短路电流500ma,这个计算同时告诉我们采用推挽输出时一定要小心千万不要出现外部电路短路的可能,否则肯定烧毁芯片,特别是外部驱动三极管时别忘了在三极管的基极加限流电阻。推挽输出电路的形式很多,有些单片机上下都采用n型管,但内部逻辑提供互补输出,以上的说明仅仅为了说明推挽的原理,为了更深的理解可以参考功率放大电路。

*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。

参与讨论
登录后参与讨论
在路上
最近文章
ARM的开发步骤
2010-05-30 17:13:59
LPC2XXX系列问答(二)
2010-05-30 17:08:12
LPC2XXX系列问答(一)
2010-05-30 17:07:28
推荐文章
最近访客